A New Local Modelling Approach Based on Predicted Errors for Near-Infrared Spectral Analysis

نویسندگان

  • Haitao Chang
  • Lianqing Zhu
  • Xiaoping Lou
  • Xiaochen Meng
  • Yangkuan Guo
  • Zhongyu Wang
چکیده

Over the last decade, near-infrared spectroscopy, together with the use of chemometrics models, has been widely employed as an analytical tool in several industries. However, most chemical processes or analytes are multivariate and nonlinear in nature. To solve this problem, local errors regression method is presented in order to build an accurate calibration model in this paper, where a calibration subset is selected by a new similarity criterion which takes the full information of spectra, chemical property, and predicted errors. After the selection of calibration subset, the partial least squares regression is applied to build calibration model. The performance of the proposed method is demonstrated through a near-infrared spectroscopy dataset of pharmaceutical tablets. Compared with other local strategies with different similarity criterions, it has been shown that the proposed local errors regression can result in a significant improvement in terms of both prediction ability and calculation speed.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Application of Combined Local Object Based Features and Cluster Fusion for the Behaviors Recognition and Detection of Abnormal Behaviors

In this paper, we propose a novel framework for behaviors recognition and detection of certain types of abnormal behaviors, capable of achieving high detection rates on a variety of real-life scenes. The new proposed approach here is a combination of the location based methods and the object based ones. First, a novel approach is formulated to use optical flow and binary motion video as the loc...

متن کامل

Novel Application of Near-infrared Spectroscopy and Chemometrics Approach for Detection of Lime Juice Adulteration

The aim of this study is to investigate the novel application of a ‎handheld near infra-red spectrophotometer coupled with classification methodologies as a screening approach in detection of adulterated lime juices. For this purpose, a miniaturized near infra-red spectrophotometer (Tellspec®) in the spectral range of 900–1700 nm was used. Three diffuse reflectance spectra of 31 pure...

متن کامل

Novel Application of Near-infrared Spectroscopy and Chemometrics Approach for Detection of Lime Juice Adulteration

The aim of this study is to investigate the novel application of a ‎handheld near infra-red spectrophotometer coupled with classification methodologies as a screening approach in detection of adulterated lime juices. For this purpose, a miniaturized near infra-red spectrophotometer (Tellspec®) in the spectral range of 900–1700 nm was used. Three diffuse reflectance spectra of 31 pure...

متن کامل

Representing Spectral data using LabPQR color space in comparison to PCA method

In many applications of color technology such as spectral color reproduction it is of interest to represent the spectral data with lower dimensions than spectral space’s dimensions. It is more than half of a century that Principal Component Analysis PCA method has been applied to find the number of independent basis vectors of spectral dataset and representing spectral reflectance with lower di...

متن کامل

Improving the Classification Accuracy for Near-Infrared Spectroscopy of Chinese Salvia miltiorrhiza Using Local Variable Selection

In order to improve the classification accuracy of Chinese Salvia miltiorrhiza using near-infrared spectroscopy, a novel local variable selection strategy is thus proposed. Combining the strengths of the local algorithm and interval partial least squares, the spectra data have firstly been divided into several pairs of classes in sample direction and equidistant subintervals in variable directi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 2016  شماره 

صفحات  -

تاریخ انتشار 2016